

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC})
DC Switch Voltage (V_{S}) (Note 2)
DC Input Voltage (VIN) (Note 2)
DC Input Diode Current
DC Output Current
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$) ESD (Human Body Model)
-0.5 V to +7.0 V
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
-0.5 V to +7.0 V
$-50 \mathrm{~mA}$
128 mA
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
4000 V

Recommended Operating

 Conditions (Note 3)| Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 4.75 V to 5.25 V |
| :--- | ---: |
| Control Input Voltage | 0 V to V_{CC} |
| Switch Input Voltage | 0 V to V_{CC} |
| Operating Temperature | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Thermal Resistance | |
| (TSSOP) | $115^{\circ} \mathrm{C} / \mathrm{W}$ |
| (TSSOP) | $127^{\circ} \mathrm{C} / \mathrm{W}$ |

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics All typical values are for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} @ 25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ	Max		
$\mathrm{V}_{\text {ANALOG }}$	Analog Signal Range	4.75 to 5.25	0		2.0	V	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.75			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{IH}	Input Voltage HIGH	4.75 to 5.25	2.0			V	
V_{IL}	Input Voltage LOW	4.75 to 5.25			0.8	V	
I_{IN}	Control Input Leakage	5.25			± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
I_{OZ}	OFF State Leakage Current	5.25			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance	4.75		3.0	7.0	Ω	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{I}_{\mathrm{ON}}=13 \mathrm{~mA}$
	(Note 4)	4.75		7.0	10.0		$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{I}_{\text {ON }}=26 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.25			3.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} \mathrm{~V}_{\text {CC }}$ or $\mathrm{l}_{\text {OUT }}=0$

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).

ol	Parameter	V_{cc}		$40^{\circ} \mathrm{C}$ to	$5^{\circ} \mathrm{C}$	Units	Conditions	Figure
	Parameter	(V)	Min		Max		Condions	Number
t_{ON}	Turn ON Time	4.75 to 5.25	1.0		5.0	ns	$\mathrm{V}_{1}=7 \mathrm{~V}$ for $\mathrm{t}_{\text {PzL }}$ and $\mathrm{V}_{1}=$ OPEN for $\mathrm{t}_{\text {PZH }}$	Figures 1,2
toff	Turn OFF Time	4.75 to 5.25	1.0		5.0	ns	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$ for $\mathrm{t}_{\text {PLZ }}$ and $\mathrm{V}_{\mathrm{I}}=$ OPEN for $\mathrm{t}_{\text {PHz }}$	Figures 1,2
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay (Note 5)	4.75 to 5.25			0.1	ns	$\mathrm{V}_{1}=$ OPEN	Figures 1,2
DG	Differential Gain	4.75 to 5.25		0.29		\%	$\mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$	
DP	Differential Phase	4.75 to 5.25		0.10		Degree	$\mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$	
$\mathrm{O}_{\text {IRR }}$	OFF-Isolation	4.75 to 5.25		-84.0		dB	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{RL}=150 \Omega$	Figure 3
$\mathrm{X}_{\text {TALK }}$	Non Adjacent Channel Crosstalk	4.75 to 5.25		-54.0		dB	$\mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{f}=10 \mathrm{MHz}$	Figure 4
BW	-3dB Bandwidth	4.75 to 5.25		368		MHz	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	Figure 5

Capacitance

Symbol	Parameter		$\mathbf{T}_{\mathbf{A}}=-\mathbf{4 0 ^ { \circ } \mathrm { C } \text { to } + \mathbf { 8 5 } { } ^ { \circ } \mathrm { C }}$	
		Typ	Units	Conditions
C_{IN}	Control Pin Input Capacitance	3.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{ON}	A/B ON Capacitance	30.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{OE}=0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{OFF}}$	Port B OFF Capacitance	5.0	pF	V_{CC} and $\mathrm{OE}=5.0 \mathrm{~V}$

FSAV332

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

PJN \#1 IDENT. -

nates:
A. CONFIRMS TI JEDEC REGiStRATION MD-153 VARIATIJN AB,

REF NTIE 6, DAIED 7/93
b dmensinns are in milineIters
C. DIMENSIGNS ARE EXCLUSIVE OF BURRS, MDLD FLASH,

AND TIE BAR EXTRUSIONS
D. BIMENSIDNING AND TDLERANCES PER ANSI

Y14.5M, 1982
MTC14revD

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
